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ABSTRACT

The use of the Fisher distribution to estimate

the mean direction of magnetization of a rock at a

sampling site is now standard. Sampling sites are

chosen to cover 10 to 10 years to average out the

effect of secular variation. The controversy about

how to combine these site means has never been satis-

factorily resolved. By using statistical models for

secular variation, this paper suggests how methods

should be derived. A number of interesting statis-

tical distributions and estimation problems are

shown.

Key words: Palaeomagnetism, Fisher distribution,

unit vectors, multivarlate normal dis-

tribution.
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1. INTRODUCTION

When a lava containing iron cools below its Curie point, it becomes

magnetized in the direction of the earth's field at that place and time.

Sediments containing magnetic particles also acquire (a much weaker) local

magnetization as they are formed. The study of palaeomagnetism led to the

current revolution in geology - plate tectonics. For assuming that the earth's

magnetic field has always been much the same as it is now - except for rever-

sals of polarity - a magnetic measurement gives a good estimate of the lati-

tude of the site when the rock was magnetized. These latitudes make no sense

unless one is willing to admit that continental drift has taken place - in

fact, they allow continental reconstructions to be made. A full account may

be found in the book by McElhinny (1973).

The strength of the magnetization of a specimen may have altered over

time and so it is not used in this work - only the direction of natural reman-

ent magnetism, i.e., the original magnetization. Later changes can be

"cleaned" out by methods not relevant here. (If the rocks are unstably mag-

netized, they cannot be used.) If N specimens are taken from one site

with directions, the N unit vectors, r1,..., rN9 after cleaning, may be

assumed to be a sample from Fisher's distribution

Ksnhi exp K r-w (K Z O) (1)

where u is the (unit) mean direction. Fisher (1953) showed that the maximum

likelihood estimator of v is the direction of R = Eri, the vector resultant

of the sample and, further, that if IRI is the length of R, K^ is the solu-

tion of

coth K - (11K) a IRI/N . (2)



-2-

An approximation to K is K given by

N-1 (2)N IRI

K measures the precision of the Fisher distribution. Further statistical

methods appropriate for palaeomagneticists were given by Watson (1956a, b)

and Watson and Irving (1957).

The latter paper gives an approximate within and between sites method

of analyzing data from several sites. It is assumed that the within sites

distribution is Fisher with K = Kw about the site mean and that the site

means are independently Fisher with K = K8 about the true palaeornagnetic

direction. Unfortunately, this compound of Fisher distributions is only

approximately Fisher. The estimate of KB was meant to measure the secular

variation since it is supposed that the sites sample the full cycle of secu-

lar variations. This is some 104 to 105 years when the pole moves around

its mean position, a short period on continental drift time scales.

In designing this analysis, no real thought was given to modelling secu-

lar variation. Furthermore, the immense amount of experimental work done

since then has shown that site means often do not vary symmetrically around

some mean direction as implied by the Fisher distribution (1), as we supposed.

When the earth's field is averaged over the time period of secular var-

iation, it is found to be approximated, with surprising accuracy, by an earth-

centered magnetic dipole currently inclined at about 11 degrees to the rota-

tional axis. From elementary physics, the magnetic force H at a point r

from a dipole M (H, M, r are all vectors) is given by

where the prime denotes a transpose, I is the 3x3 identity matrix, and
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Irl is the length of r. Of course, the center of the earth is too hot to

support a dipole! The field is thought to be due to a self-exciting dynamo

made of asymmetric flows of conducting rock (mainly iron and nickel) through

stray permanent fields of the rotating earth. Minor changes in the flows and

the eastward movement of the crust relative to the interior (core) of the

earth cause the secular variation and even the reversals.

Irving and Ward (1964) supposed that the secular variation was due to

a smaller geocentric dipole m whose orientation varied uniformly at random

over the period but whose magnitude Iml was constant. Then the field at

site r at different times in the period is independent and has the repre-

sentation

H (3  T,-r - I (M + m)/r13 (4)

Here and below we will regard M as fixed and define p = /)ml. Creer et

al. (1959) assume that the main dipole M has fixed strength IMI but

"wobbles" - that the direction of the main dipole is independent from time to

time and has a Fisher distribution. Creer et al.'s model says

H -3 r " - I]M* /Ir13t (5)

where I* a IMId and d has a Fisher distribution about u, and some large

K. Cox (1970) supposes that the main dipole oscillates In strength and wobbles

in direction and that there is, In addition and independently, a randomly

oriented smaller dipole m, as in the Irving and Watson model. In his case

H - 3 - % (t + m)/Irl3 (6)

where the average value of M+  is to be M about which 0+  has a rotationally

symmetric distribution.
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In the last five years some more complex models have been suggested

which generate secular variations with dipoles on the surface of the core -

see, e.g., Harrison & Watkins (1979). Here we will be content to explore

models expressed in (4), (5), and (6), or closely related to them. We will

assume that large samples have been taken at each site so that site mean direc-

tions are known exactly. Let these directions be L1, L2, ..., LN. The

problem is to estimate i, the direction or mean direction of M, M*, M+.

We will choose, as a unit of length, the earth's radius (assuming it to

be a sphere) and set u - r/urj. Then the common factor in (4), (5), and (6)

is 3uu' - I where u is a fixed but arbitrary unit vector. We will write

U , 3uu" - I. (7)

Note that U = U', U2 - 3uu' + I and that

U - 2uu + uu, + u3u:

where u, u2, u3 are orthonormal. Hence the elgenvalues and eigenvectors of

U are trivially known. Each of the models has the form

H = UX

where X is a random vector, U is fixed and only the direction of H is

observed. In the next section we will explore the distributional and estima-

tion problems this raises. They have some intrinsic statistical interest

and may have other applications. In the third section, we return explicitly

to our main problem.

2. STATISTICAL PRELIMINARIES

(a) Fisher observed that his distribution may be derived from the

Gaussian as follows. If X has a trivarlate Gaussian distribution with

mean vector uj and covariance matrix a 2I, set R - lxl, L - X/R,



A u/1u1. ihen the Joint density of R and L is

exp - (R2 + I1I) exp RIPI L'X (8)3/2a33/ 2
(27) 1 2c

so that the density of L on the unit sphere, conditional on a fixed R, is

proportional to

exp JIV L- . (9)

From (1) we see that L then has a Fisher distribution about the mean direction

X with a K of Rlil/a 2. If (9) were appropriate, we know how to estimate

X and Rlpl/o 2 - use Fisher's estimations for (1).

If, however, (8) were appropriate but we were only given the directions

L,., LN  of X1,..., XN9 we would have to use the density f of L,

R2 11

exp - (R + - 2RIult L2 l dR (10)
0

This is simpler if we set S * R/o, v J ul/, since then

f(LAv) - 2 exp{- 1S2 + 2- SL)}S (11)

0

with the vector derivative

r S3V ex 1 S 2 .+V2 _- C) d (12)
a~f r s~ 2 -2SvL" )}LdS .{2
SJ (2w)3/ x{ v

- vJ(L,X,v)L, say . (12-)

Since A A 1, the maximum likelihood (m.l.) estimate of X requires us to

solve
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N
( log f(Lj) + ex'x) 0 0
J=1

i.e.,

N J(L ,X,v)
L + ax 0(13)Sf(Lj,,)L+

If v is known, (13) may be solved numerically by an iteration. An initial
N

estimate of X, X\I) would be the direction of Z L With computer programs
1 J

()(1)[J(L ,X(11x and f(Li, ) (13) would be used to find " etc.to compute LX

The two integrals have well-behaved integrands so that numerical integration

will not be difficult.

To estimate the lon-negative parameter v, we observe that

- , 231 ( v + SL'X) exp 1- S 2 + - 2SvL'X) S

0

(14)

- -vf + L'XJ

Hence the m.l. equation for V is

N vf(L,Xgv) + LX J(L , ,v)

J=- f(LjA'v)

or
or 1 N L'X J(I *x~v)

J u! f(Lj ,,v) '

a form ideal for iteration. It is convenient that no more integrals need be

evaluated. To start off the v iteration we again use the analogy between

(8) and (9) and suggest

V (1) N -1Z (16)
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Thus to solve jointly (13) and (15) for X and v, one seesaws between

them using the suggested X and v(1). Hence given only the directions

L1 ,..., LN of a sample of N from G(u,c I), we may estimate the direction

of 1i and v = Ji/a. To find the covariance matrix, the second derivatives

of the log-likelihood will be evaluated in the usual way. We will leave this

calculation for an applied paper to appear elsewhere. This paper will also

show the shape of distribution defined by (10) or (11) and compare it with others.

This distribution has of course appeared before (see e.g. Kendall (1974) under

the names "off-set" or "displaced" normal - I prefer "angular" normal.

(b) If we observed the directions of n copies of Y = TX, where X is

Gaussian mean u with known covariance matrix aI, and T is a known non-

singular 3x3 matrix, we see that we may set a2 = 1 without loss of gen-

erality where we wish to estimate the direction of p. The density of Y is

exp - 1(Y-(TT-')IY - 2uT'Y + -'p) . (17)

(20 3/2jITJ e

Setting Y = RL where R > 0 and ILl - 1, the Joint density of R and L is

exp - 1(R2 L(TT-)i'L - 2R/rT1'L +
(27013/2, ITIJ

Thus the density of L is

h(L,) R2 (R2L'(TT')'L 2R'TL + u'v)dR

J(27r) 11Th1

so

h R 23 exp - - +
au (27r) 3/2l ITI I

* (RT1 L - u)dR .
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Defi ne r-
i(LP= (2)3lTlR3 exp - !(R2 L'(TT')-L - 2Rv-T 'L + u-u)dR

0

We see that the m.l. equation for V is

I N K(Lju) _
V1 N h(L, ,1j) T L - P (18)

j-1 -T- L

A natural initial value is U(') = N'T'EL for the iteration to find U.^

Then we will take the direction of 1^. To get the accuracy of v, we may use

second derivatives in the usual way.

(c) To go one step further, if Y = UZ where Z is Gaussian with mean

vector P and a known covariance matrix Z and we wish to estimate the

direction of ji given the direction of N Y's, we may write

y= UZ - Ut+I/2E-I/2z

- TX

whereI Thr UZ1/2  X a Z'I/2z

and X is Gaussian (Z'1/2u,I). Thus we may use the method of subsection (b)

to estimate E-1/2P. Given an estimate of the latter, we have an estimate of

., since Z1/2 is known, and hence of its direction.

Subsection (c) leads to an algorithm to solve the problem of Section 1

for a model of secular variation where the geocentric dipole has a multivariate

Gaussian distribution. This is not a model included in (4) and (5); it is a

limiting case in (6).

IA
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(d) To deal with model (6) we are led to study the distribution of

Y X + v where X is Gaussian - mean u, covariance E - and v is uni-

formly distributed over a sphere of radius 6. This leads to a plethora of

apparently new multivariate densities.

Because of their intrinsic interest, we consider some vey Apecia ca ae

not directly relevant to our main problem. In one dimension, the density of

y clearly is

2 1 ))

-1 1(exp - .fl(y - i-6)~ + exp - 1~

=J~ exp{. (cy - U) 6 J+csh M(Y -

In two dimensions the density of y = (yly2)' is

1 exp - 1(Y" U, " 6 Cos -) 2 1 sin 0)2de

0

1 2 2 2
(2(21)

" exp - Y - +l +

r exp(Y 1 - ii) cos 8 + 6(y2 - U2 ) sin elde

* exp{ . {(Y1  III')2 + (Y2 - U2)2+611}0 (y - UHI

where 1o(z) is the Imaginary Bessel function of zero order.

In three dimensions, a similar averaging of the Gaussian with mean u

and covariance matrix I leads to
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1 f1 ~i 1 2 1 sinh 61Y-)Il
(21)312 61y - "

In each case, as 6 - 0 the modifying factor tends to unity. The

averaging has most effect when IY - ul for the basic density is then fallen

off very fast. Let us now return to our real problem.

Model (6) requires a general form of the interesting new distributions

just given. To put it in neutral notation, let Y = X + d where d is uni-

formly distributed over a sphere of radius 6, X is Gaussian mean v and

covariance Z, and the density of Y at y is given by

Ave 1 exp - y - d - u)' -(y d - U)
Idl=6 (2;)3/2Z 2

-lexp - Wy - U)E (y -vi) (19)
(2w)3/2 I 

2

Avedl6 exp{d'1 1 (y - ) d'z-ld

If £ = H'DH where H is orthogonal and D diagonal, z = 6D'H(y - v), and

E 1 = 2D'1 , the averaging term is

,Ave exp {e'z e-E-le}

which cannot be further evaluated. In fact, with z = 0, it is the norw&a-

izing constant of the Bingham distribution (see, e.g., the book by Mardta, 1972)

and, when z # 0, of a generalization recently studied by Beran (1979). To

get to the working form of the Cox model, we must find the density of the

direction of the vector y from (19). Thus the Cox model (6) is hard to

deal with mathematically, so estimation schemes based on it do not seem very
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practical. However, the Gaussian model without the random smaller dipole

seems an adequate approximation since, typically, jml/IM is about one-tenth.

(e) The model (4) raises interesting problems. Here M is fixed and

m is uniformly distributed over a sphere of radius Iml, also fixed. Thus

Em = 0, Emm = lmJI/3.

First, we consider several related academic problems similar to familiar

textbook estimation examples. Suppose that N 2 points y are uniformly

distributed along a line segment in space, i.e., y = M + vd where v is

uniformly distributed on (o,lml) with M, Iml and d unknown and to be

estimated. If, when the points are arranged on the segment, they fall in the

order ylYn,..9 YN' then ± d is known exactly, and we have

JY2 - Y-l' y
3 - Y21 ' -I IYN - YNII as the interior gaps when N points

are randomly distributed on (OIml). The sufficient statistic is (y 1yN).

Simple estimators are (with m - diml) yl = M, YN = M + m or y1 = M - m,

N. These will be biased, as are the analogues on the real line. To give

another interesting example, suppose we could observe' N copies of y = M + m

where M and m are as in model (4). For N z 3, Imi and M can be found

exact~y from the perpendicular bisectors of chords which must intersect at

M. As is so often the case, things are simpler on the circle and sphere than

on the line.

In practice, we can only observe the directions L of U(M + m). Assuming

that M - fmlii/c, m -ImId, with c - ImI/IMI known and epproximately 0.1 and

d uniformly distributed over the surface of the unit sphere. It suffices to

consider the case of observing L where

RL a U(N + cd)

with known c. M.l. here is very awkward. Since
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U+ cd1  R U'L ( = 1,..., N),

one might use (since Ed 0 0) the estimator

cc u .(20)

1

A case of confidence can be obtained from the approximate multivariate dis-

tribution of E U .L To this end we note that
1

R2 VU 2
11 + 2cp'U2d + c2dU 2d

so

ER2  3(iOu) 2 + 1+2c
2

2
where 2c may be ignored. If p is an approximate pole position, define

3(pu)2 + 1,

and write

i+ cd = P 1'L

Then

ii PE U 1 L

U' L - * cd

so
E(st U 1L - u)(R U'IL - ") - (c2/3)I 

(21)

which leads easily to the procedure.

(f) The model (5) of Creer et al. has M = INd where IMI is fixed

and known, and d has a Fisher distribution about p with accuracy ic. If

the direction of H a UM is known, i.e., the direction L of gd is known,

how to estimate P? Since Ru1 L Ud1 , d1 - RtU- Li, we may compute each
U'ILis reduce to unit length (so not knowing R does not matter) to obtain the

d1. Since these have a Fisher distribution, Fisher's estimator and method of
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getting a confidence case for v. may be used. This is, in fact, a standard

method of estimating the positon of the pole. It is important to observe that

the Fisherian method is not applied here to the site means but their transforms.

Note that it is related to but different from estimators (20), (18), (15), (13),

which are very similar.

3. ESTIMATION OF POLE POSITIONS

We have seen that a rational method of estimating pole positions should

follow, by the application of maximum likelihood, from a statistical model

for secular variation. In cases where the model makes strict m.l. estimation

too difficult, one must try to improve and check the approximations and simpli-

fications made. Since, however, there is unlikely to be any agreement on the

model, the chosen method should not be sensitive to model changes within the

range of disagreement, i.e., the method should be robust.

The multivariate normal method of Section 2(c) allows a wide variety of

models to be tried. These will be tried out in an applied paper to see what

model changes are most crucial. -The Fisher estimation method has been shown

to be robust against deviations from the Fisher distribution but the cone of

confidence is not so reliable - Watson (1967).

A counsel of greater perfection is to make a more detailed statistical

study of secular variation in the hope of finding a more convincing model.

Certainly the newer, more complex models mentioned earlier should be explored.

This will be attempted elsewhere. Further, we have here assumed that the

site means are known, whereas they will only be estimated, often with different

accuracies. This must be taken into account in the final practical method.
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